New Fabric Uses Sun And Wind To Power Devices

0
New Fabric Uses Sun And Wind To Power Devices
A piece of fabric was woven with special strands of material that harvest electricity from the sun and motion. Credit: Georgia Tech

Scientists from Georgia Institute of Technology developed a new fabric that gathers power from both the sun and the wind. Scientists have combined two types of electricity generation into one textile. According to scientists, such types of fabric could provide a source of energy to power devices such as smartphones or global positioning systems.

Zhong Lin Wang, a Regents professor said, “This hybrid power textile presents a novel solution to charging devices in the field from something as simple as the wind blowing on a sunny day.”

Discovery of this new fabric:

Scientists used a commercial textile machine to sew solar cells together made from lightweight polymer fibers with fiber-based triboelectric nanogenerators.

Read: Bike Washing Machine: Exercise AND Wash Laundry Eco-friendly

Triboelectric nanogenerators use a combination of the triboelectric effect and electrostatic induction. Thus, it generates a small amount of electrical power from mechanical motion like rotation, sliding or vibration.

This new fabric is 320 micrometers thick woven together with strands of wool. It is flexible, breathable, lightweight and adaptable for various uses. It also could be combined into tents, curtains or wearable garments.

Wang said, “Fiber-based triboelectric nanogenerators capture the energy created when certain materials become electrically charged after they come into moving contact with a different material. We used photoanodes made in a wire-shape fashion for the sunlight-harvesting part of the fabric.”

The backbone of this new fabric is made from polymer materials that are cheap and eco-friendly. Electrodes are made through a process that is used in large scale manufacturing.

Read: Plastic Clothing Material That Cools the Skin

During an experiment, scientists attached fabric to a rod, just like the small colorful flag. Scientists then able to produce essential power from moving the car. This is done by rolling down the windows in the car and letting the flag blow in the wind. Thus outcome can charge 2 mF commercial capacitor to 2 volts in one minute under sunlight and movement. This indicates that it has the unique capability of working in the harsh environment.

The previous test shows that the fabric can withstand repeated and rigorous use. Now, scientists are looking for its durability. Next steps also include further optimizing the fabric for industrial uses. For example, developing proper encapsulation to protect the electrical components from rain and moisture.